
Copyright © Copia 2022 Copia Automation | copia.io

Intro to Git-Based

Version Control for

Industrial Automation

Copyright © Copia 2022 Copia Automation | copia.io

The Value Of Version Control For Industrial Automation

Good version control practices are essential for efficient code development.
They ensure that you, your team, and your company can track changes to
files over time, understand why the changes were made and by who, and
revert to specific versions of code if needed. When a robust version control
system is implemented correctly, teams can focus more on the
development activities instead of searching for and investigating code
changes. As more engineers are assigned to the project or more time
passes between project activities, the benefits of proper version control
increase. Less time is required to understand how and why a project arrived
at its current state.

For an industrial automation developer, a sound version control system will
ensure you can always answer the following questions:

Where is the latest version of the PLC code, and can I access it without
calling another developer?

Is this version of code the same as that has been deployed onto the
PLC?

Was the latest version reviewed/approved by the proper people?

What has changed between this file and the previous version? Who
made the change and why?

Can I control which persons can access the files at different stages of
the PLC code’s lifecycle?

While there are many different types of version control systems, this
document focuses on Git, which dominates the software industry with over
80% market share and is used by ~100 million developers.

What is Git?

Git is a mature and actively maintained open-source tool created in 2005 by
Linus Torvalds (the founder of Linux). It is now the most widely used
modern version control system globally. There were several reasons why Git
became the standard.

1 Git is distributed, meaning files and history are stored locally and in a
central repository. This characteristic enables engineers to work
without network access.

2 Git is fast. Since history is stored locally on your device, changing
versions is nearly instant.

3 Git is secure. Git uses a hashing algorithm that ensures that every edit
is traceable. It is impossible to change a file or directory without Git
knowing.

2

Copia Automation | copia.io 3Copyright © Copia 2022

How is Git Different from GitHub?

Git is an open-sourced, distributed version control tool. GitHub is a cloud-based platform built around
Git. GitHub hosts a Git repository in the cloud, and is the most popular way people utilize Git source
control. It started as a for-profit company, and Microsoft purchased the company in 2018. Other
platforms built around Git include GitLab, Bitbucket (Atlassian), AWS CodeCommit, and Copia
Automation. When we talk about the popularity of Git version control, we refer to the total users of the
various Git providers and the open-source tool.

An important thing to note is that Git is often used via a command-line interface but has a simple
graphical user interface (GUI). Most 3rd party Git providers - like GitHub and Copia, include a more
comprehensive graphical user interface that simplifies Git tasks and, in the case of Copia, adds value
when dealing with specific file types. (For example, Copia is tailor-built to show ladder logic and
function block diagrams when working with industrial Automation files).

Today’s Manual Process Is Prone To Errors

For an industrial automation professional who is not familiar with Git, it may
be easiest to understand if you compare it to the widespread and manual
practice of using an archive folder to manage industrial automation files.

The typical Archive Folder Workflow has the following steps:

1 The controls engineer creates project files on their local computer,
using an installed Integrated Development Environment (IDE) (such as
Rockwell Automation® Studio 5000 Logix Designer® or Siemens® TIA
Portal). The names of the files are often a user created mix of a project
name, version, and engineers initial (.i.e Mixer_DAH_V1.1)

2 Edits are stored by overwriting the previous file (Save), or copying and
renaming the new files (Save As).

3 When work is completed to a significant state, the file or entire project
folder may be zipped and copied to a central location for sharing and
backup.

4 If another team member needs to access the files to review or make
changes, they need to download them to their local hard drive and use
their development environment to view and edit the files.

It is not uncommon for controls engineers to “Copy and Rename” to manage
a file's history, resulting in a list of similar files distinguished by file names
and modification dates.

Copia Automation | copia.io 4Copyright © Copia 2022

Unfortunately, there are many problems and limitations with this workflow.
For example:

There is no inherent information on why a file was updated or changed.
Additional work is needed to document and communicate changes.

Project organization is based on manually naming files, which is prone
to human error.

There is no easy way to see the difference between file versions. Some
IDEs provide this capability, but only for their specific file types.

Local files are not backed up regularly. Work is often lost, and the latest
version of a project may not be in the archive folder.

Collaboration is limited. If teammates copy the same file from the
central location and make changes, they cannot easily merge their
work.

It is difficult for managers to understand the progress made on a project
since the work is usually kept on local machines.

There is no inherent method for reviewing and approving files.

Setting access permissions for specific files can be challenging.

For large files, copying, pasting, and eventually uploading can take a
significant amount of time. This fact may decrease the frequency at
which projects are backed up.

Git alleviates these disadvantages. A basic Git-based workflow has many
similarities to the Archive Folder Workflow workflow. Work is done locally,
changes are saved and committed to the file’s history, and then these
committed changes are synchronized to a centralized location. There are
significant benefits as Git removes the need to copy, move and rename files
manually. Git stores versions of the project and provides rich context on
who-what-and-why changes were made.

Prone to error, most
organizations rely on file copies
with file names to indicate which
version is the latest.

Copia Automation | copia.io 5Copyright © Copia 2022

Git Glossary | Common Terms

Many people struggle with the Git terminology. Here is a quick glossary of terms to understand before
discussing basic Git workflows:

Repository (Repo)

A "repository" or “repo” is simply a folder
structure stored in Git. The "root" of a
repository is the base folder you want to
store. A repository is different from a
typical directory only because it stores
context about the changes to the root
folder and all of the subfolders under the
root.

Local Repository

A copy of the repository local to your
workstation.

Remote Repository

A copy of the repository that is centrally
located in the cloud or on a server. It is
where you push changes for collaboration
and backup.

Branch

A branch is a diversion from the main
working project. By creating a new branch,
the user can create a new version of the
repo or experiment with changes that will
not affect the base code. The most recent
commit is considered the head of that
branch. If you are happy with the changes
in one branch, you can merge those
changes into another branch.

Main (Master) Branch

Akin to the trunk of a tree from which all
other branches start. The main branch is
where the final, error-free code is stored.
Every Git repository has a main branch.
You can create new parallel branches off
the main branch, empowering you to do
work without affecting that mainline.

Clone

A copy of an existing repository. The clone
can be made as a branch or downloaded to
your local repository from a remote
repository. You are required to create a
clone to work on a repository.

Commit

A commit is a recorded change to a file or
set of files. It is often thought of as a
snapshot or version of your repository.
Commits only create a snapshot in your
local repository. To synchronize these
changes to the remote repository, Push.

Pull Request (PR)

A pull request (PR) occurs when you alert
others about or request a review of a
change you’ve pushed to a remote
repository. The changes can be discussed,
reviewed, and commented on, with follow-
up commits added before the changes are
merged into the main branch. The intent of
the pull request is to merge changes into
the main branch.

Push

A push is a command used to add your
commits from your local repository to a
remote repository. A push is the opposite
of a fetch.

Merge

Merging combines two branches. Typically,
commits made to a branch are merged into
the main branch after being reviewed via a
pull request. In some organizations, a
project maintainer or manager is
responsible for approving merges.

Copia Automation | copia.io 6Copyright © Copia 2022

The Basic Git Workflow

Here are the steps of a Basic Git Workflow for an Industrial Automation
project:

1 A central repository is created on a server. This server will be cloud-
hosted for most Git providers (GitHub, Copia, etc.).

2 The repository is then cloned to the control engineer's local machine. It
will appear on the local PC as a standard Microsoft® Windows® folder.

3 The engineer creates their automation files using their local IDE (such
as Rockwell Automation Studio 5000 Logix Designer), saves the file in
the local repository, and commits these changes to the file history
when ready.

4 When a development milestone is reached, or the engineer believes it is
appropriate, the engineer will push their committed changes to the
central repository.

5 Meanwhile, teammates who have also cloned the central repository
locally can “pull” the updated files to their local repository so that they
are always working with the latest files.

You can see these steps outlined in the diagram below:

In a Git workflow, file names
stay the same, and commit
history is automatically tracked.
A simple set of pull and push
commands ensure that
everyone has access and is
working with the latest version.

Copia Automation | copia.io 7Copyright © Copia 2022

With Git, each committed
change is stored with context
and can be visualized as a node
along a main branch of code. A
simple revert command can be
used to access previous
changes.

A PLC file’s history can be viewed using a Git commit graph. Notice that any
previous commit can be retreived if needed.

There are some subtle things worth mentioning:

As changes are made, file names can stay the same in Git. There is no
reason for the engineer to have to use the file name to describe the
state of the project (i.e. Apex_labeler_DAH_Final.ACD). Git tracks the
difference in each commit for you.

Tasks like creating and cloning repositories, committing, pushing, and
pulling are fast and usually only take a few mouse clicks. The Git
workflow is easy to execute.

Git never deletes or overwrites files, so you can always access your
historical work if needed. If you accidentally removed a rung and saved
the file, you can simply revert to an earlier version. It’s like a post-save
undo!

A persistent internet connection is not required. You can work locally
and then push changes at a later time. This is quite helpful when
making code changes on field-based devices.

Why Hasn’t Git Been Widely Adopted by PLC Programmers (Yet)?

We mentioned that a remarkable benefit of Git version control is tracking
when files change and showing what changed.

Git does this by displaying the contents of file versions and highlighting the
differences in a diffing process. Diffing is relatively fast and straightforward
because most traditional software development uses text-based
programming languages (including Python, JavaScript, Java, C#, C, and C+
+).

Copia Automation | copia.io 8Copyright © Copia 2022

An example of a Git “diff” is provided below. The red items indicate lines of
deleted code, and the green items represent new code that has been
added.

Unfortunately, PLC programming evolved quite differently than traditional
software programming. While there are some text-based languages for PLC
Programming, most are done in visual languages like Ladder Logic and
Function Block Diagrams. This problem was compounded because many
PLC vendors use different binary file formats. The inability of standard Git to
display these languages reduced much of its value for many controls
engineers.

So to be clear, for most industrial controls projects, Git can tell you when
and who changed files but not show you how those files changed. The lack
of this significant benefit has slowed Git adoption.

Git visually displays the changes
between commits in text-based
files. Deleted code is shown in
red, while additions are shown in
green.

Git relates that PLC files have
changed, but does not visually
show differences between file
states.

Copia Automation | copia.io 9Copyright © Copia 2022

Copia Automation to the Rescue

Copia Automation was founded to bring modern developer tools to
industrial automation professionals, unlocking the productivity gains already
realized in traditional software development. They have started by solving
the issue around visualizing and diffing PLC code changes when using Git-
based source control.

Copia toolsets empower engineers to visualize PLC code in ladder logic,
function block diagrams, and structured text languages. Copia can visualize
code from Rockwell Automation® Studio 5000 Logix Designer®, Siemens®
TIA Portal, ABB® Automation Builder, Beckhoff® TwinCAT®, Lenze® PLC
Designer, Wago® e!COCKPIT, CODESYS®, and additional vendor support.
Teams can follow a consistent workflow no matter what PLC vendor they
choose.

It is essential to understand that Copia renders the PLC code in its desktop
app and web browser. This capability provides incredible freedom to
automation teams and accelerates code review and discussions. Consider a
junior engineer developing a section of code that controls machine safety
and finishes their task late in the day. With only a web link, a manager who
needs to review the code can securely log in to the Copia repository from a
home computer and see the latest changes directly in a web browser.

Copia visually displays changes
between commits to ladder logic
files. Deleted rungs are
displayed in red, and additions
are shown in green.

Copia Automation | copia.io 10Copyright © Copia 2022

Advanced Git Workflows to Unlock Greater Value

Although we described a basic Git workflow, Git supports advanced
workflows that add more control and improve collaboration. These
workflows are centered around concepts known as Branching and Merging.

An easy way to understand the concept of branching is to envision that
every development project has a main branch where the final error-free
code is stored. Every commit represents a vetted change that purposely
improves the code.

Git allows you to create a parallel branch from the main branch when
adding new features and creating bug fixes. This branch enables you to
make changes without disturbing the main branch. If your code changes are
successful, you can merge the changes back into the master branch; if they
are not successful, you can delete them.

Using this branching and merging process gives your team greater control
over when the main branch is changed. For example, rules can be
developed and enforced so only project leads can merge code into the main
branch, ensuring that all changes are reviewed and approved.

Another benefit of this workflow is that it keeps the project development
history clean and easy to understand. Significant changes to the production
code are documented in the main branch, while work in progress is tracked
and stored within development branches.

One of the most powerful aspects of Branching and Merging is the ability
for multiple developers to work on the same project simultaneously. Each
developer can create individual development branches, and when their
work is complete, they can use the merge command to stitch their work
together into the main branch. Branch and merging allow you to add more
engineers to a job to meet tight deadlines.

Git branching can ensure that
any work in progress
(development branches) can be
completed and reviewed before
merging with the production
code (main branch).

Copia Automation | copia.io 11Copyright © Copia 2022

Development branches can exist
simultaneously, allowing multiple
engineers to work together on
the same code. Merging can
combine all work together into
the main branch.

You might ask, “What happens if two engineers change the same line of
code and then merge - and which change will be accepted?”

Git handles such situations with tools to resolve merge conflicts. The
project lead can see both changes and choose the better one. This ability is
another reason why visualizing differences between commits is so essential
during the code review process.

What is a Pull Request?

A service call with a PLC programmer is needed after machine commissioning. The programmer
can create a branch and work on code. Upon completion, they can notify the project lead that
the branch is ready for review and merge. To do this, they create a pull request.

A pull request occurs when you alert others about or request a review of a change you’ve
pushed to a remote repository. The changes can be discussed, reviewed, and commented on,
with follow-up commits added before the changes are merged into the main branch. The intent
of the pull request is to call for a merge into the main branch.

Copia Automation | copia.io 12Copyright © Copia 2022

Branching and Merging, Tailor-Built for Industrial Automation

We have stated that Copia Automation provides specific tools to visualize
ladder logic. The same visualization is used when handling merge conflicts.
Copia will display the rungs in questions and prompt the decision-maker to
choose which change is preferred if multiple engineers change the exact
area of code.

Copia understands that thorough code review, careful pull request approval,
and thoughtful merge conflict resolution are essential for producing the
highest quality code. Copia allows teams to add comments at the rung level
to discuss and document decisions during a pull request. This context,
captured throughout a project's lifecycle, can be utilized to train new
programmers, ensure consistency, and identify opportunities to improve.

If a conflict is detected during a
merge, Copia will display the
conflicting code and prompt the
user to choose a resolution.

Copia Automation | copia.io 13Copyright © Copia 2022

How Git-Based Version Control Improves Business

Hopefully, at this point, you have a clear understanding of Git-based version
control and the features that are meaningful to industrial automation
professionals, specifically PLC programmers. When we talk about the value
to a business, the primary benefit is centered around employee productivity
and shortening product timelines. With Git-based source control
implemented, all individuals will spend less time searching for the files and
investigating how files differ during their lifecycle. That time savings can be
reinvested in high-value work developing innovative and high-quality code.

Branching and merging enable multiple team members to work on the same
automation project simultaneously. This practice has the potential to be a
substantial competitive advantage for a company and ensure tight project
deadlines are met.

The increased collaboration of Git-based version control also enables the
business to utilize their most skilled people more efficiently. Senior control
engineers can quickly review more junior engineers' work continuously via a
web app and document their feedback to help accelerate team training.

Improved code quality is another significant benefit of a Git-based version
control system. Using visual diffing capabilities allows errors to be detected
more readily. Formal pull request procedures ensure that only authorized
people can change the production code.

Finally, a solid Git-based version control system can save a business
thousands when dealing with unexpected operational problems. If a major
incident disrupts manufacturing, the last good version of the code can
always be found quickly and used to restore service.

Summary and Next Steps

Git is the ubiquitous source control solution for software development, and
its use has accelerated the speed at which code is developed and
deployed. It is proven to shorten development timelines, increase quality,
and maximize operational uptime.

While the visual languages and proprietary formats of PLC code have kept
industrial automation developers from realizing the same gains, Copia
Automation has made tremendous strides to remove these challenges.
Now, ladder logic and function block diagrams are supported and can be
visualized outside of their development environments. While saving and
storing code is slightly different from the traditional archive folder workflow,
Git-based source control for industrial automation projects is easy to learn
and worth the benefits.

It’s easy to get started with Git. You can find more information and choose
to download the open-source version of Git from or try
a free version of GitHub at . If you are considering Git
for your PLC programming projects, we strongly recommend requesting a
demo of Copia Automation at .

https://git-scm.com
https://github.com/

www.copia.io

Copyright © Copia 2022 Copia Automation | copia.io

copia.io

	eBook_IntroToGitBasedVersionControlForIndustrialAutomation_00
	eBook_IntroToGitBasedVersionControlForIndustrialAutomation_01
	eBook_IntroToGitBasedVersionControlForIndustrialAutomation_02
	eBook_IntroToGitBasedVersionControlForIndustrialAutomation_03
	eBook_IntroToGitBasedVersionControlForIndustrialAutomation_04
	eBook_IntroToGitBasedVersionControlForIndustrialAutomation_05
	eBook_IntroToGitBasedVersionControlForIndustrialAutomation_06
	eBook_IntroToGitBasedVersionControlForIndustrialAutomation_07
	eBook_IntroToGitBasedVersionControlForIndustrialAutomation_08
	eBook_IntroToGitBasedVersionControlForIndustrialAutomation_09
	eBook_IntroToGitBasedVersionControlForIndustrialAutomation_10
	eBook_IntroToGitBasedVersionControlForIndustrialAutomation_11
	eBook_IntroToGitBasedVersionControlForIndustrialAutomation_12
	eBook_IntroToGitBasedVersionControlForIndustrialAutomation_13

